
Project: Persian Rap Token
Platform: Binance Smart Chain
Website: persianraptoken.com
Language: Solidity
Date: October 26th, 2024

http://persianraptoken.com

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions …………………………………-…………………………………………...12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 15

Our Methodology ………………………………………………………………………………... 16

Disclaimers ………………………………………………………………………………………. 18

Appendix

● Code Flow Diagram ……………………………………………………………………... 19

● Slither Results Log ………………………………………………………………………. 20

● Solidity static analysis ….……………………………………………………………….. 22

● Solhint Linter …………………………………………………………………….……….. 23

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Persian Rap Token to perform the Security audit of the
Persian Rap Token smart contract code. The audit was performed using manual analysis
and automated software tools. This report presents all the findings regarding the audit
performed on October 26th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The `PersianRapToken` contract you shared appears to be a custom BEP-20 token

implementation with standard functionality along with some additional features like account

freezing, safeguard mechanism, and token minting. Here's a breakdown of the code,

highlighting some key aspects and suggestions for improvement:

Key Features:
● Ownership Management: The contract follows a standard ownership pattern using

the `owned` contract, which includes the ability to transfer ownership and provides a

safeguard mechanism to prevent the transfer to unintended addresses by mistake.

● Safeguard Mechanism: The safeguard mechanism is useful to halt all non-owner

functions in case of an emergency. The owner can toggle this mechanism using the

`changeSafeguardStatus` function.

● Token Details:
○ The token has a fixed supply with `name`, `symbol`, and `decimals` defined

as constants.

○ `maxSupply` is set to 21 million tokens with 8 decimal places.

● Account Freezing: The contract allows the owner to freeze accounts, which

prevents the frozen account from sending or receiving tokens.

● Minting and Burning:
○ The contract allows the owner to mint new tokens, provided the total supply

does not exceed the maximum supply.

○ Users can also burn their tokens, reducing the total supply.

● Withdraw Mechanism: The contract allows the owner to manually withdraw tokens

or Ether from the contract.

Overall, the contract is robust and includes many essential features.

Audit scope

Name Code Review and Security Analysis Report for
Persian Rap Token Smart Contract

Platform BSC / Solidity

File PersianRapToken.sol

Smart Contract 0x95257a9B8EaC1E58D41356A5B16Af0d610AC9911

Audit Date October 26th, 2024

https://bscscan.com/address/0x95257a9B8EaC1E58D41356A5B16Af0d610AC9911#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Token Details:
● Name: PersianRapToken

● Symbol: PNRT

● Decimals: 8

● Total Supply: 20 Million

YES, This is valid.

Core Functionalities:
● Transfer, approve, and burn tokens.

● Mint new tokens (up to the maximum supply).

● Allow token owners to freeze accounts.

● Safeguard mechanism to halt non-owner

functions.

YES, This is valid.

The owner has several administrative functions:
● The contract is `owned`, enabling the owner to

perform administrative functions.

● Ownership transfer requires acceptance by the

new owner.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity-based smart contracts
are “secured”. This token contract does contain owner control, which does not make it
fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 3 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? Not Detected

Max Transaction amount? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check No

Can Mint? Yes

Is it a Proxy? No

Can Take Ownership? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in the Persian Rap Token are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties/methods can be

reused many times by other contracts in the Persian Rap Token.

The Persian Rap Token team has not provided scenario and unit test scripts, which would

help to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given a Persian Rap Token smart contract code in the form of a bscscan weblink.

As mentioned above, the code parts are well commented on. And the logic is

straightforward. So, it is easy to understand the programming flow and complex code logic

quickly. Comments are very helpful in understanding the overall architecture of the

protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://bscscan.com/address/0x95257a9B8EaC1E58D41356A5B16Af0d610AC9911#code

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 name write Passed No Issue
3 name write Passed No Issue
4 decimals write Passed No Issue
5 totalSupply write Passed No Issue
6 balanceOf write Passed No Issue
7 allowance write Passed No Issue
8 _transfer internal Passed No Issue
9 transfer write Passed No Issue
10 transferFrom write Passed No Issue
11 approve write Passed No Issue
12 increase_allowance write Passed No Issue
13 decrease_allowance write Passed No Issue
14 receive external Passed No Issue
15 burn write Passed No Issue
16 freezeAccount write access only owner No Issue
17 mintToken write access only owner No Issue
18 manualWithdrawTokens write access only owner No Issue
19 manualWithdrawEther write access only owner Removed
20 changeSafeguardStatus write access only owner No Issue
21 onlyOwner modifier Passed No Issue
22 transferOwnership write access only owner No Issue
23 acceptOwnership write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No high-severity vulnerabilities were found.

Medium

No medium-severity vulnerabilities were found.

Low

No low-severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Approve of ERC20 standard: This can be used to front run. From the client side, only

use this function to change the allowed amount to 0 or from 0 (wait till the transaction is

mined and approved). This should be done from the client side.

(2) This smart contract has owner-only functions. So, the owner's wallet's private key must
be kept very secure. otherwise, if that wallet was compromised, then this smart contract’s
fate goes into the hands of a hacker.

(3) All functions which are not called internally, must be declared as external. It is more
efficient as sometimes it saves some gas.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best -practices

Centralization

This smart contract has some functions that can only be executed by the Admin (Owner).

If the admin wallet's private key is compromised, then it usually creates trouble. The

following are Admin functions:

PersianRapToken.sol
● freezeAccount: Allow` `target` from sending & receiving tokens by the owner.

● mintToken: Create `mintedAmount` tokens and send them to `target by the owner.

● manualWithdrawTokens: The owner can transfer tokens from the contract to the

owner's address

● manualWithdrawEther: The owner can manually withdraw ether.

● changeSafeguardStatus: The owner can change the safeguard status.

Ownable.sol
● acceptOwnership: The new owner can accept ownership by the current owner.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code as a bscscan weblink, and we used all possible tests

based on the given objects. We have observed 3 very low-severity issues. but these

issues are not critical. So, the smart contract is ready for mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all security vulnerabilities and other issues found in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://bscscan.com/address/0x95257a9B8EaC1E58D41356A5B16Af0d610AC9911#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:

We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment, and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best to conduct the analysis and
produce this report, it is important to note that you should not rely on this report only. We
also suggest conducting a bug bounty program to confirm the high level of security of this
smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - Persian Rap Token

Slither Results Log
Slither Log >> PersianRapToken.sol

INFO:Detectors:
PersianRapToken.allowance(address,address).owner (PersianRapToken.sol#158) shadows:

- owned.owner (PersianRapToken.sol#46) (state variable)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
owned.transferOwnership(address)._newOwner (PersianRapToken.sol#61) lacks a zero-check on
:

- newOwner = _newOwner (PersianRapToken.sol#62)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
PersianRapToken.changeSafeguardStatus() (PersianRapToken.sol#344-351) compares to a
boolean constant:

-safeguard == false (PersianRapToken.sol#345)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#boolean-equality
INFO:Detectors:
Pragma version0.8.19 (PersianRapToken.sol#5) necessitates a version too recent to be trusted.
Consider deploying with 0.8.18.
solc-0.8.19 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Contract owned (PersianRapToken.sol#45-72) is not in CapWords
Parameter owned.transferOwnership(address)._newOwner (PersianRapToken.sol#61) is not in
mixedCase
Parameter PersianRapToken.transfer(address,uint256)._to (PersianRapToken.sol#189) is not in
mixedCase
Parameter PersianRapToken.transfer(address,uint256)._value (PersianRapToken.sol#189) is not
in mixedCase
Parameter PersianRapToken.transferFrom(address,address,uint256)._from
(PersianRapToken.sol#204) is not in mixedCase
Parameter PersianRapToken.transferFrom(address,address,uint256)._to
(PersianRapToken.sol#204) is not in mixedCase
Parameter PersianRapToken.transferFrom(address,address,uint256)._value
(PersianRapToken.sol#204) is not in mixedCase
Parameter PersianRapToken.approve(address,uint256)._spender (PersianRapToken.sol#219) is
not in mixedCase
Parameter PersianRapToken.approve(address,uint256)._value (PersianRapToken.sol#219) is not
in mixedCase
Function PersianRapToken.increase_allowance(address,uint256)
(PersianRapToken.sol#241-246) is not in mixedCase
Function PersianRapToken.decrease_allowance(address,uint256)

(PersianRapToken.sol#257-262) is not in mixedCase
Parameter PersianRapToken.burn(uint256)._value (PersianRapToken.sol#286) is not in
mixedCase
Constant PersianRapToken._name (PersianRapToken.sol#88) is not in
UPPER_CASE_WITH_UNDERSCORES
Constant PersianRapToken._symbol (PersianRapToken.sol#89) is not in
UPPER_CASE_WITH_UNDERSCORES
Constant PersianRapToken._decimals (PersianRapToken.sol#90) is not in
UPPER_CASE_WITH_UNDERSCORES
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
PersianRapToken.slitherConstructorVariables() (PersianRapToken.sol#80-355) uses literals with
too many digits:

- _totalSupply = 21000000 * (10 ** _decimals) (PersianRapToken.sol#91)
PersianRapToken.slitherConstructorConstantVariables() (PersianRapToken.sol#80-355) uses
literals with too many digits:

- maxSupply = 21000000 * (10 ** _decimals) (PersianRapToken.sol#92)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Slither:PersianRapToken.sol analyzed (2 contracts with 93 detectors), 22 result(s) found

Solidity Static Analysis
PersianRapToken.sol

Gas costs:
Gas requirement of function PersianRapToken.maxSupply is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 92:6:

Gas costs:
Gas requirement of function PersianRapToken.freezeAccount is infinite: If the gas requirement of
a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 302:6:

Gas costs:
Gas requirement of function PersianRapToken.mintToken is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 312:6:

Gas costs:
Gas requirement of function PersianRapToken.freezeAccount is infinite: If the gas requirement of
a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 302:6:

Gas costs:
Gas requirement of function PersianRapToken.mintToken is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 312:6:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 313:10:

Solhint Linter

PersianRapToken.sol

Compiler version 0.8.19 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:4
Contract name must be in CamelCase
Pos: 1:44
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:50
Provide an error message for require
Pos: 9:56
Provide an error message for require
Pos: 9:66
Constant name must be in capitalized SNAKE_CASE
Pos: 5:91
Function name must be in mixedCase
Pos: 5:256
Provide an error message for require
Pos: 9:257
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:267
Code contains empty blocks
Pos: 35:274
Provide an error message for require
Pos: 9:286
Visibility modifier must be first in list of modifiers
Pos: 72:311
Error message for require is too long
Pos: 9:312
Visibility modifier must be first in list of modifiers
Pos: 45:333
Visibility modifier must be first in list of modifiers
Pos: 48:343

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

